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A b s t r a c t

Victims of Alzheimer’s disease (AD) develop a progressive dementia over years, accompanied by development of neu-
rofibrillary tangles and finally neuronal death, accumulation of amyloid plaques and deposition of amyloid in neuro-
vessels. Currently AD is the major form of dementia and the fourth leading cause of death in aged population. The
investigation of etiology and therapy of AD, now more than ever, needs an infusion of new concepts. The aims of this
review are to analyze knowledge of the influence of ischaemic and amyloid pathology on the final development of AD,
especially with regards to the etiology of AD plaques, to develop a consensus on whether ischaemic blood-brain bar-
rier permeability for amyloid peptide or both are a valid target for AD therapy. Reviewing experimental models of AD,
we will address the issue whether plaques of amyloid persist, develop with time or both in animals during different
forms of experimental therapy. Based on above suggestions recent direct evidence that amyloid plaques and neuro-
fibrillary tangles can be cleared from the brain is thus provided in experimental condition. Moreover, recent study pro-
vides data that immunization with β-amyloid peptide decreases blood-brain barrier permeability for β-amyloid pep-
tide or restores blood-brain barrier integrity. This review summarizes the latest advances in this area focusing on
investigations based on in vivo animal studies. 
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Introduction

Around 6.2 million people in Europe are estimated
to suffer from dementia of which Alzheimer’s disease
(AD) accounts for around three quarters of the cases.
Taking into account their careers and families for
whom caring often becomes a heavy personal and
financial burden, some 20 million people are affected,
i.e. around 4% of the European population. The num-
ber of patients with AD doubles every 5 years beyond
age 65. Alzheimer’s disease affects more than 25% of
the age 85 and 40% of those aged 90 and over.
Alzheimer’s disease is the most common of demen-
tias, accounting for over 60% of all cases over age 65.
Now the population of Poland aged ≥65 years is 6.5
million. It is estimated that about 260 thousands indi-
viduals suffer from Alzheimer dementia in our coun-
try. The second most common form of dementias is
vascular dementia, usually resulting from vascular
brain diseases. Late onset AD is not caused by ageing,
nor is it an inevitable part of the ageing process, it is
age-related [6,169]. Alzheimer’s disease affects circa
19 million people worldwide without developing
countries with a prevalence of approximately 1 per-
cent in the total population, although the risk of being
afflicted with AD increases with age [6,132,169]. By
2025 the population of world aged 65 years and older
will exceed one billion with more than 700 million liv-
ing in developing countries. Now when the lifespan
quickly increases, the number of sporadic AD cases
increases dramatically, too. Actually almost 30 million
individuals in around the world suffer from
Alzheimer’s dementia and this number of sick per-
sons in the next century will multiply several fold
unless treatments to prevent, or cure the disease that
currently are unavailable will be found. Alzheimer’s
disease is already responsible for a huge social and
economic costs projected to rise exponentially in the
coming decades [157] as the elderly part of the socie-
ty continues to increase [27]. 

Now it is clear that AD is multifactor [50,72,76,
119,168] and thus heterogeneous disease [50,71,
81,105]. Alzheimer’s disease can affect different peo-
 ple in different ways but the most common symptom
pattern begins with gradually worsening difficulty in
remembering new information. This is because dis-
ruption of brain cells network, which usually begins in
areas involved in the forming new memories. As the
damage spreads, patients also experience confusion,
disorganized thinking, impaired judgment, trouble

expressing themselves and disorientation with regard
to location, time and space that may lead to unsafe
wandering and socially inappropriate behavior. In
advanced AD, patients need help bathing, dressing,
using the bathroom, eating and carrying out other
daily activities. Those in the final stages of the dis-
ease, lose their ability to communicate, fail to 
reco gnize loved ones and become bedbound and
reliant on continual care. Alzheimer’s disease is final-
ly fatal. The course the disease takes and how fast
changes occur vary from case to case. On average,
sporadic AD patients live almost 10 years after they
are diagnosed, though the disease can last for as
many as 20 years [167]. 

Despite ongoing experimental and clinical interest
in AD, the cause of the disease in sporadic cases is
not known [7,67,109,144]. It is postulated that more
than one pathogenetic pathway is involved in AD etio -
logy. Owing to the involvement of more than one trig-
ger factor in development Alzheimer’s pathology it is
important for the discovery specific therapies to pre-
vent and treat this disease. Development of therapies
requires the ability to correctly diagnose disease and
knowledge about its neuropatogenesis. Diagnosis in
AD patients is always late. The study of etiology and
therapy [15] of sporadic AD, now more than ever
needs an infusion of a new proposals. In 2007 approxi-
mately US$ 5.5 billion was spent on the symptomatic
treatment of AD. The vast majority of this expense
was generated by just four drugs within two main
classes, the acetylcholinesterase inhibitors [53] and
N-methyl-D-aspartate receptor antagonists [148,165,
173]. Since all currently available treatments are
symptomatic treatments, aimed at alleviating the
symptoms of the disease and trying to slow the dete-
rioration of the patients, there is a significant current
need for improved drugs that can modify the under-
lying course of the disease. New concepts are needed
as current obligatory treatment directed at sympto-
matic relief in AD patients has shown to be marginal-
ly effective or even a lack of efficacy has been demon-
strated [2,15,53,116,148,173,178,179]. Despite of several
expensive drugs worldwide for therapy of AD, the di-
sease still robs millions aged individuals of both their
memory and their live. New science is identifying
many of the novel pathways [13,129,135,136,166,
168,169], which contribute to this damaging live 
dise ase, providing unprecedented opportunity for the
discovery new therapies aimed at the root causes of
AD [82,83,94,103]. More effective therapies directed
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at the cause of disease are needed. The genomic and
ischaemic basis of AD will be defined completely in the
near future, and corresponding molecular therapy tar-
gets will be identified. Ischaemic and genomic theories
in brain degeneration have arrived and their applica-
tion to resolving AD is our best hope. 

The future front runner is autoimmunization,
although this too is facing challenges in development.
It may be some time before the first disease modify-
ing agents emerge, which could revolutionize the way
AD is treated. In 1998 [123], scientific interest in a new
treatment approach to the therapy of AD was ignited
after ischaemic model of AD investigation [120,122,
125], which indicated that it might be possible to
immunize against the damaging properties of human
β-amyloid peptide 1-42, [123,124] which led to accu-
mulation and aggregation of this danger peptide in
intra- and extracellular space of brain tissue [120,121,
124,126]. Pluta and colleagues [123] first presented
that active immunization with human β-amyloid pep-
tide 1-42 completely removed full-length amyloid
from ischaemic rat brain [123,124]. This finding next
has been partially confirmed and extended in other
models of AD using both active [154] and passive [10]
immunization. The main aim of this review is on the
novel treatments for AD with a special emphasis on
delivering against Alzheimer’s proteins strategies.
The expected epidemic number of AD cases in the
next century makes the progress and discovery of
effective therapy a matter of greatest importance and
urgency. Presented review is good reason for revolu-
tionary changes in future therapy of AD.

Ischaemic hypothesis of Alzheimer’s 
disease

Recent study on transgenic AD animals with over-
expression of amyloid precursor protein presented
that cerebral blood flow is impaired in the animal
models even before development of amyloid plaques
and/or vascular amyloid deposition [69]. At least one
third of brains with Alzheimer type dementia exhibit
different neurovascular disorders [77]. In brains of AD
cases, micro or macro intracerebral infarctions and
white matter ischaemic damage [131,139] are evident
[77]. Approximately 40% of cases with vascular type
dementia had Alzheimer’s-type pathology such as
different kind of plaques [74,182], neurofibrillary tan-
gles [80], hemorrhages [31,118] and neuronal death in
hippocampus [75,76]. The presence of ischaemic

changes seems usually ignored and regarded by 
scientists as insignificant or considered incidental in
AD neuropathology. Interestingly, that Alzheimer in
his original case of AD had made a note that besides
”storage of peculiar material in the cortex, one sees
endothelial proliferation and also occasionally neo-
vascularisation” [3]. Endothelial proliferation with
angiogenesis in the brain vessels of first patient pro-
vides data that ischaemic pathology was also present
in the first case of AD. Above data suggest that we
have overlap between vascular dementia and
Alzheimer dementia [75,132] and that cerebrovascu-
lar pathology [13] plays a main role in the pathogene-
sis of AD. Aforementioned data raised the question
what was the first: neurovascular disorder as
a starter of AD [132] or degeneration of Alzheimer’s-
type itself [40]? Recent data propose a triggering and
significant role for ischaemic mechanisms contributing
to the degenerative processes in AD [13,77,113,125,
129,132,135,137,141,180,193]. Collected findings sug-
gest that neuronal death following ischaemia with
amyloid peptide from ischaemic circulatory system
modulate ischaemic brain injury via molecular events
in common with Alzheimer-type pathology [137 see
for references]. These data indicate that brain
ischaemia might be a key factor in the formation the
full picture of Alzheimer dementia over years.

The brain has a limited response to different
pathogens. For example similar neuropathological
features are noted in the brain with ischaemia and
that of AD. The pathogenesis of and a relationship
between ischaemic dementia and Alzheimer’s demen-
tia are lastly much debated [40,76,113,119,128,137].
The role of both ischaemic brain injury and ischaemic
blood-brain barrier changes in the pathology of AD is
now more important than has long been assumed
[19,22,113,119,125-130,133,135,136,163,191]. It is cur-
rently accepted that vascular dementia and AD share
the same risk factors [132 see for references]. Cellular
processes that lead to neurons demise in both disor-
ders are known and are shared, too. Recently increas-
ing information is mounting that pathological fea-
tures of both disorders often occur concomitantly in
individual cases. In fact mixed dementia may not 
represent two single co-occurring disorders but rather
a single disease in which ischaemic hallmarks in neu-
rons interact with focal ischaemic amyloid precursor
protein metabolic alterations in characteristics brain
regions. In contrast to the classical hypothesis of AD
[6] new results indicate directly that brain ischaemia
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contributes to the progression of AD pathology [177].
Ischaemia is well known factor of neurons death,
blood-brain barrier abnormalities, inflammatory
response, tangles and plaques formation and finally
dementia development [5,7,13,14,19,22,33,35,38,40,
50,51,58,68,74,76,78,80,86,113,137,161,162,177,180,
182,187,191,192]. Importantly aforementioned results
showed those lesions, which mimic the biochemical
and neuropathological changes as you can see in AD
and they induce tau protein [180,187] and amyloid
peptide pathologies and slow progressive cognitive
impairment development [187]. 

Post mortem AD brain examination confirmed
commonly present cerebrovascular alterations [5,185]
that suggested ischaemic pathology. Epidemiological
studies have presented a synergistic and spatial con-
nection between neurovascular pathology and AD
pathology [5] in formation the clinical evidences of
dementia. For example nuns, who had neurovascular
pathology, were more demented than those with tau
pathology and a big number of amyloid plaques but
without neurovascular pathology [161,162]. Additio -
nally human Rotterdam investigation presented that
clinically silent ischaemic brain injuries doubled the
risk of dementia and had a direct connection with
rapid cognitive decline as compared to individuals
without ischaemic episodes [177]. Above data are sup-
porting of the hypothesis that silent ischaemic injuries
contribute to the Alzheimer phenotype dementia
[132,177]. In summary, many AD cases had silent
ischaemic episodes [177], which represent cause of
neurons death, blood-brain barrier changes, inflam-
mation response, neurofibrillary tangles and amyloid
plaques formation and finally full-blown Alzheimer’s
dementia [5,7,13,14,19,22,33,35,38,40,50,51,58,68,74,
76,78,80,86,113,137,161,162,177,180,182,187,191,192].

Pathogenesis for AD neurodegeneration include:
changes in calcium concentration [184], triggering of
specific receptors affecting cell homeostasis, activa-
tion of oxidative processes [47], disruption of mem-
brane integrity [96,175,176] and changes in lipid,
influence of glutamate connected neurons death,
inflammatory response, tau pathology [6,29,109] and
pathological amyloid precursor protein processing
[6,29,55,61,88,96,104,109,111,159] and aging [30,32,
98,155] or a combination of two or more of above
processes. All above presented mechanisms you can
observe in brain ischaemia. It has been suggested that
ischaemic brain injury and ischaemic blood-brain bar rier
changes may have an important role in formation

brain degeneration with severe dementia [136 see for
references]. It is well known that neurons death is
occurring in brain ischaemia according to necrosis and
apoptosis in brain sectors characteristic for AD such
as entorhinal cortex and hippocampus [125,142].
These areas of the brain are involved in memory,
thought and language. Most signaling factors, which
trigger neurons death are known in ischaemia and are
recognized as a ubiquitous signaling network, which
links specific cell-surface receptors with the cell nuc-
leus. In this rival theory, ischaemia of the brain is re-
sponsible for neurons death and ischaemic changes of
blood-brain barrier for amyloid peptide movement
from circulatory system into the brain and finally
amyloid plaques formation [133,134,136,140 see for
references]. It means that cross talk between
ischaemic neuronal death and ischaemic blood-brain
barrier injury exists in AD brain and could have sig-
nificant implications for the triggering and matura-
tion of AD [129,132,140-142]. Moreover, AD decreased
length of capillaries in hippocampus correlates well
with clinical pathology of Alzheimer dementia [9].
Oligomeric form of amyloid peptide through ischaemic
neuronal toxicity and ischaemic vasculotoxic proper-
ties may provide an important link between AD and
ischaemic neurodegeneration processes of this type of
dementia [38,39,69,119-121,193]. Amyloid influence
on blood-brain barrier vessels [1] is therefore one pos-
sible mechanism of blood-brain barrier damage [4] in
AD [19,51,52,97,99,163]. Some studies indicate that
90% of human’s amyloid plaques [80] and 80% of
amyloid plaques in the transgenic AD models [43] are
in direct contact with blood-brain barrier neuroves-
sels [31,141,142] and they have spatial correlation with
circulation network [5]. The reasons for AD are not
known, but recent evidence strongly suggests that
neurovascular ischaemic alterations play an impor-
tant role in development this kind of disorder
[12,14,38,40,68,69,76,78,86,113,122,125,128,129,132,13
3,135]. Some data from experimental models indi-
cates that neurovascular insufficiency may be a trig-
ger in AD and could provide link between this disor-
der and ischaemic brain injury [14,69,125,132,133].
β-amyloid peptide 1-42 influences the production of
occludin and claudin tight junction proteins potential-
ly affecting blood-brain barrier permeability [99]. In
transgenic AD model with amyloid precursor overex-
pression amyloid positive microvessels showed
endothelial cells apoptosis. Interesting findings in
transgenic models of AD suggested that this disorder
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had not only a neurodegenerative but also neurovas-
cular elements [69]. Brain hypoperfusion and changes
in blood-brain barrier transport could impair amyloid
peptide clearance [12] and lead to increased level of
both soluble and oligomeric amyloid peptides in brain
tissue [69,127,130,131,142]. In addition brain hypoper-
fusion can trigger ischaemic injury, which may act  
synergistically with AD elements [69,131,138] to exac-
erbate slowly a cognitive deficit. Alzheimer’s disorder
is associated with severe neuropathology in vessels
[9,77,191,193], changes in function [69] and functio nal
MRI [156] that suggest that changes in the cerebral
blood flow may be a predictor for AD development
[91]. Recently it is important to look for new, rival
hypothesis such as ischaemic theory, which designs
new strategies for AD etiology and finally treatment
[14,40,68,69,76,113,119,132,138]. Ischaemic processes
in neuropathogenesis of AD may have significant
implications for therapy of neurons loss in this disor-
der. In this rival hypothesis neurotoxicity of amyloid
peptide [6] will contribute partially, if at all to Alz-
heimer’s disease brain degeneration.

In summary the start of AD pathology involves an
initial neurons changes triggered by ischaemia
[69,74,182], which leading to enhanced neurons vul-
nerability to β-amyloid peptide [84] and the ischaemic
changes of the blood-brain barrier [97,120] vessels
with leakage of serum borne amyloid peptide
[120,160] into the brain parenchyma, activation of
amyloid peptide dependent neurons injuries [84] and
finally culminating in the development of different
amyloid plaques [74,120,182] and end in full-blown AD
[132,141,177,180,187] (Fig. 1). It is proposed that AD
may be caused by silent ischaemic episodes [177] that
attack and slowly steal the minds of its victims. More-
over, ischaemia increases the toxicity of amyloid pep-
tide. Next possibility is that ischaemia increases the
vulnerability of primarily ischaemic neuronal cells to 
β-amyloid peptide neurotoxicity or accumulation of 
β-amyloid peptide increased ischaemic vulnerability
[84]. According recent data the brain ischaemia age’s
brain 3.6 years each hour without treatment [153] 
and that explain age-dependent progression of
Alzheimer’s disease.

Anti-amyloid treatment 

1998 is a turning point in the new history of novel
idea in AD therapy [123]. At first the full success
against human β-amyloid peptide 1-42 immunization

in ischaemic rats [123,124] and second moderate effect
in transgenic mouse model overexpressing amyloid
precursor protein [154] and third passive immuniza-
tion against β-amyloid peptide [10] led to the fast
development of immunotherapies in animals and
clinical trials in human AD. In the past decade investi-
gations on immunization had led to the formation of
new experimental proposals as well as alternative
routs of vaccine delivery to amyloid plaques in AD
brain [27,62,64,82,83,94,103,164,165,172].

Human β-amyloid peptide clearance therapy had
remarkable effects in ischaemic AD model [123,124]
and less effect in transgenic AD model [154]. In
human clinic, vaccination results were less conclu-
sive [62,94,112]. Trials in patients with AD were pre-
maturely stopped when 6% of vaccinated cases
developed aseptic meningoencephalitis [54,112,117].
In addition only 20% of cases produced antibody
against amyloid peptide [54]. Brains treated with vac-
cine presented post mortem less plaques in different
brain regions, as well as presence of T lymphocytes.
Moreover, antibody responders presented any
improvement in clinical memory tests. Above results
showed that vaccine therapy against β-amyloid pep-
tide might still be a viable option for the treatment of
individuals with AD. Currently, it has been observed
that antibodies against β-amyloid peptide are pres-
ent in human immunoglobulin that specifically reco -
gnize and inhibit the neurotoxic effects of β-amyloid
peptide [44].          

Over the past ten years ideas of therapy have
been focused on inhibitors of β- and γ-secretases
responsible for the production β-amyloid peptide
from parent amyloid precursor protein [45,149,158].
Decrease of different forms of β-amyloid peptide in
the brain of old rats after oral delivery of the γ-secre-
tase inhibitors has been shown to reduce levels of 
β-amyloid peptides in both brain parenchyma and
cerebrospinal fluid [17,49]. Another new line of inves-
tigation is the use of antibody against β-secretase in
which reduction of different amyloid forms was
observed in transgenic animals [145]. This reduction
correlated with some improvement of cognitive acti -
vity. Two single-chain antibodies have been presented
to possess α-secretase activity providing a novel use
of immunotherapy [103,147]. Other scientists have
used small particle libraries to screen for molecules,
which either interfere with assembly of β-amyloid
peptide particles into fibrils [37,89] or disaggregate
existing fibrils [18,57,164].

Consideration of the ischaemic basis and treatment of Alzheimer’s disease
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Neprilysin gene transfer into the brain leads to
a remarkable reduction of β-amyloid peptide deposits
in transgenic AD model [79,100]. Above data suggest
that the deficient degradation of β-amyloid peptide
caused by a low levels of neprilysin might contribute
to the AD development. Insulin degrading enzyme is
another major enzyme for β-amyloid peptide degrada-
tion in the brain [103]. Overexpression of this enzyme
decreases level of β-amyloid peptide and retards or
completely prevents amyloid plaques formation in the
brain tissue [92]. Another two enzymes, angiotensin
converting enzyme and endothelin converting enzyme
degrade β-amyloid peptide, too [47,63]. 

Therapy by gelsolin, an agent that has a high affi -
nity for β-amyloid peptide decreased the level of 
β-amyloid peptide in the brain tissue probably via
a peripheral action [102]. Other β-amyloid peptide
bindable drug, curcumin can cross blood-brain barrier
and bind amyloid plaques and decrease amyloid con-
centration and plaque burden in transgenic model of
AD [186]. The enoxaparin β-amyloid peptide bindable
agent delivered peripherally significantly lowered 
β-amyloid peptide deposits in cortex and the total
amyloid peptide cortical level probably by sequester-
ing the serum β-amyloid peptide peripherally [16].
According to the peripheral sink theory [41,42], β-amy-

Brain ischaemia

Ischaemic neurons BBB

Neurofibrillary tangles 
Platelets Leukocytes

Inflammation 

CAA

βA

Neuronal death

Dementia

Alzheimer’s disease

βA –  β-amyloid peptide, BBB – blood-brain barrier, CAA – cerebral amyloid angiopathy

Fig. 1. Ischaemic basis for sporadic Alzheimer’s disease neuropathogenesis.  
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loid peptide bindable substances sequester serum 
β-amyloid peptide that leads to clearance of amyloid
peptide by promoting a net efflux of a rapidly mobi-
lized soluble pool of β-amyloid peptide. The periphe ral
sink theory was proposed by DeMattos et al., [41] and
was based on results obtained by passive immuniza-
tion transgenic mice. These investigators proposed
a model where sequestering of β-amyloid peptide in
immune complexes in the plasma decreases the level
of soluble β-amyloid peptide, which then contributes
to a net efflux of amyloid peptide from the brain into
blood [41,42].

Currently endogenous autoantibodies against 
β-amyloid peptide and receptor for advanced glyca-
tion-end-products peptides have been noted in
healthy persons and individuals with AD [108].
Above data suggests that physiologically occurring
autoantibodies against amyloid peptide and recep-
tor for advanced glycation-end-products might be
effective to β-amyloid peptide clearance from brain
and blood.

Anti-tau treatment 

Experimental treatments have been directed
against hyperphosphorylated tau protein either by
inhibiting various protein kinases or promoting phos-
phatase activities [70,83,90]. Current in vitro investi-
gation shown small particles, which inhibited tau pro-
tein filament nucleation and fibrillization, making this
substance a promising candidate to test in animal
models of AD [25]. A new interesting observation
about amyloid peptide vaccination has been presen -
ted lastly in experiments in which triple transgenic
mice were passively immunized with antibodies
against β-amyloid peptide [115]. β-amyloid peptide
immunization leads to clearance of early but not late
hyperphosphorylated tau protein aggregates via the
proteasome [115].

Some investigation presented that memantine
reversed hyperphosphorylation of tau protein in hip-
pocampal slices [95] and this effect of memantine
occurred by disinhibition of the function of protein
phosphatase 2A [26] that earlier was noted to be
downregulated in brains of AD patients [56]. Based
on above information’s, it was presented in human
clinic that therapy of AD cases by memantine
[148,173] during one year significantly decreases
hyperphosphorylated tau in cerebrospinal fluid [59]. 

Anti-inflammatory treatment

In AD brains, the microglial cells behaved as
inflammatory invaders, which cause an unintended
pathology via release of cytokines designed to
answer to primary brain pathology. This reaction may
lead to a progression of AD through neurons death.
Epidemiological observations suggest that long use of
nonsteroidal anti-inflammatory therapy may prevent
AD development [106,170]. Based on the above data,
studies were undertaken to investigate the effects of
anti-inflammation treatment in AD models [47].
These investigations include nonsteroidal anti-inflam-
matory drugs [107], peroxisome proliferator-activated
receptor-γ agonists [46,65,152] and cannabinoids
[146]. Another new data from transgenic model of AD
showed that immunotherapy against β-secretase
decreases development of inflammation in brain
injury [145].

Umbilical cord blood cells delivered i.v. 48 hours
after stroke are able to decrease neurodegeneration
by providing neuroprotection and blocking the inflam-
matory reaction [181]. Injected cells appear to do this
via multiple mechanisms: providing neuroprotection,
modulating the inflammatory response, interrupting
the apoptotic cascade, and enhancing neurogenesis
and angiogenesis. Activation of sigma-1 and sigma-2
receptors via 1,3-di-0-tolylguanidin delivery 24 hours
after stroke is equally impressive in reducing stroke
injury [181]. Above molecule is neuroprotective by
decreasing intracellular calcium in neuronal cells and
inflammatory response by blocking the production of
cytokines from brain immune cells. In brain the
ischaemia and AD signals from the degenerating neu-
ronal cells trigger immune cells for an inflammatory
response, with increased production of cytokines.
Whether the cause is known or not, all neurological
diseases show similar intracellular neuronal signaling
and inflammation reactions. The aforementioned
therapeutic approaches may not only be beneficial for
therapy of ischaemic stroke [181] but also for AD. Afore-
mentioned two therapies act in a similar manner by
inhibiting the peripheral immune system and promot-
ing neuronal survival [181].

Blood-brain barrier treatment 

The morphological and functional integrity of the
brain depends on the coupling between cerebral
blood flow and transport via the blood-brain barrier
and neuronal function. In literature there are data
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that neurovascular unit insufficiency may be trig-
gered sporadic AD development [14,113,125,132,
137,163,193]. Possible etiological role of ischaemia in
the development of AD have been presented in detail
by several investigators [40,69,76,113,125,132,137].
Brain blood flow maintains a control of the neuronal
environment not only by autoregulation of local blood
flow but also by influencing transport by blood-brain
barrier. The blood-brain barrier is a highly energetic
system with different forms of transport via both its
blood- and brain-facing sites. Structure of the blood
facing side allows entry of nutrients products but
opposite brain facing eliminate toxic products such as
β-amyloid peptide from brain [34,35,126,193]. Among
others an important role of the blood-brain barrier is
control of the brain pool of β-amyloid peptide. The
aim of this section of review is to analyze knowledge
of the connection of the ischaemic blood-brain barrier
with final formation AD, especially with regards to the
development of amyloid plaques [132,136,137] and to
develop a consensus on whether blood-brain barrier
alterations are a valid target for AD treatment [135-
138] and to stimulate scientists’ discussion on the
most important part of rival theory with regards to
maturation of AD [132,133]. According to the ischaemic
blood-brain barrier maturation theory of AD [133] all
elements of blood-brain barrier such as endothelium,
basal lamina, pericytes and astrocytes are main tar-
gets for therapy of AD [163]. The current idea states
that injured blood-brain barrier transport system by
ischaemia at its luminal and abluminal sides for 
β-amyloid peptide with damaged neurons by
ischaemia are responsible for full-blown sporadic AD
[128,129,133,135,136,140-142]. In this way new and
more effective therapy approaches can be developed
and more data on different amyloidosis can be gath-
ered. Above observations suggest that stopping leak-
age of β-amyloid peptide from blood to brain tissue
[43] and increasing reverse transport from brain into
blood [12,126] and preventing ischaemic processes in
neurons [137 see for references] are principal main
points in treatment AD [20,24,33-36,60,73,78,85,106,
138,172]. Current studies provide data that active
immunization with β-amyloid peptide reduces blood-
brain barrier permeability, amyloid burden and neu-
roinflammation as microgliosis in transgenic model of
AD [43]. It was proved that the integrity of the blood-
brain barrier is disrupted in AD models and following
β-amyloid peptide immunization the immune system
clears amyloid peptide from sources in the brain tis-

sue as it would in peripheral organs lacking barriers.
Once β-amyloid peptide is removed, the integrity of
the blood-brain barrier is restored [43]. Above investi-
gation clearly proves that the blood-brain barrier is
disrupted in AD brain [22,163,191] and that immuniza-
tion with β-amyloid peptide repairs the damage
blood-brain barrier in transgenic AD model [43]. Earli-
er we have proved that active immunization with
human β-amyloid peptide 1-42 in ischaemic model of
AD reverses the ischaemic blood-brain barrier perme-
ability for β-amyloid peptide 1-42 [126] and prevent
further disease progression [123,124]. One possible
explanation of the restoration of the blood-brain bar-
rier is that the active immunization leads to the
reduction in the level of circulating β-amyloid peptide
[43], which could directly or indirectly influence the
activity of the blood-brain barrier [12,51,99]. For exam-
ple, inflammatory factors such as IL-1β, IL-6 and 
TNF-α [21,151] that stimulate angiogenesis [58] and 
β-amyloid peptide have been noticed to influence an
increase of some angiogenic factors like TGF-β and
VEGF [143,174]. It can be concluded that with the
removal of informatory substances provided by 
β-amyloid peptide, the endothelium become intact
and tight junctions closed, thereby restoring a physi-
ological blood-brain barrier activity. Increased level of
β-amyloid peptide in plasma has been observed in
a transgenic model of AD after active immunization
with amyloid and i.v. delivery of molecules with an
affinity to β-amyloid peptide [42,102] and after active
immunization [123,124] of non-human primates [93].
It is proposed that molecules that sequester serum 
β-amyloid peptide may decrease or prevent brain
amyloidosis [102]. Finally investigations with antibod-
ies against intercellular adhesion molecule-1 [189] or
platelet-endothelial cell adhesion molecule-1 [150]
have shown that blockage of adhesion molecules
and/or leukocyte adhesion [28] or platelets (> 90% of
β-amyloid peptide in blood is stored in platelets)
attachment respectively reduces brain neurodegener-
ation after effects. 

Several ways have been proposed to clear out 
β-amyloid peptide through blood-brain barrier includ-
ing: especially receptor-mediated β-amyloid peptide
reverse transport via blood-brain barrier [126],
enzyme mediated β-amyloid peptide degradation and
β-amyloid peptide bindable molecule mediated 
β-amyloid peptide clearance. Receptor mediated
transport of β-amyloid peptide via blood-brain barrier
is mainly responsible for both efflux and influx of
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amyloid peptide. Lipoprotein receptor-related protein
mediates efflux of β-amyloid peptide from brain into
blood [12,35]. The interaction between lipoprotein
receptor-related protein and amyloid mediates 
β-amyloid peptide blood-brain barrier vessels binding,
endocytosis and transcytosis through blood-brain
barrier into circulatory system [66]. Additionally p-gly-
coprotein has been proposed to be involved in amy-
loid clearance via blood-brain barrier [87]. Currently,
some results suggest that the neonatal Fc receptor at
the blood-brain barrier plays a crucial role in IgG-
assisted β-amyloid removal from the aging brain [36].
Receptor for advanced glycation-end-products medi-
ates influx of amyloid from serum into brain tissue
[33,35]. Downregulation of receptor for advanced gly-
cation-end-products can inhibit influx of amyloid pep-
tide [33]. Gp 330/megalin has been noted to transport
blood β-amyloid peptide in a complex with apoli -
poprotein J into brain tissue through blood-brain bar-
rier [192]. Lipoprotein receptor-related protein and
receptor for advanced glycation-end-products play
opposing roles in β-amyloid peptide transport
through blood-brain barrier [35]. One important strat-
egy would be to discover new drugs, which regulate
the function or expression of amyloid transport recep-
tors via blood-brain barrier vessels. The decreased
regulation of receptor for advanced glycation-end-
products and increased regulation of lipoprotein
receptor-related protein in blood-brain barrier might
readjust the transport equilibrium for amyloid by pro-
moting its net efflux from brain into plasma. Statins,
which increased lipoprotein receptor-related protein
in blood-brain barrier, might facilitate the clearance of
amyloid from brain tissue [34]. It is worth noting that
receptor for advanced glycation-end-products block-
ades using receptor for advanced glycation-end-
products specific IgG [108] can also increase the
expression of lipoprotein receptor-related protein
[34]. 

Gene treatment

Gene treatments are completely new forms of
therapy in which genes are transferred into the 
dama ged cells [64]. Current results suggest that 
da ma ged genes in ischaemic brain injury might be
harmful to different kinds of brain cells. Thus gene
treatment may serve to rescue those cells from
potential cells death. In this respect, recent develop-
ments have presented medical effects of gene treat-

ment in experimental global and focal ischaemic mod-
els [114]. Using gene therapy against apoptosis may
reduce apoptotic cells following ischaemic brain injury
[23,190]. Beneficial results were noticed by inhibiting
apoptosis and enhancing glial cell survival following
ischaemic neurodegeneration [183]. Moreover, midkine
and heat shock protein gene transfer showed neuro-
protection in ischaemic brain [8,171]. As such, gene
treatment offers new interesting and powerful thera-
pies in the future for ischaemic stroke and AD patients
reducing amyloid plaque burden via ex vivo gene
delivery of an amyloid degrading protease [64]. As
example neprilysin gene transfer reduces human
amyloid pathology in transgenic mice [79,100].

Other treatments

Scientific data suggest that ischaemic neuronal
cells undergo necrosis and apoptosis, necroptosis
and autophagic programmed cell death, which finally
leads to neurodegeneration with dementia. The
important factors in apoptosis are tumor necrosis fac-
tor-receptor-1 and CD95, which in ischaemic brain are
overexpressed. Thus, influence on tumor necrosis
factor-receptor-1 and CD95 by antibody treatment will
induce neuroprotection in brain ischaemia. On the
basis of this idea i.v. therapy with antibodies against
tumor necrosis factor-α and/or CD95L significantly
reduced the infarct volume in experimental brain
ischaemia [11,110] and mortality [101]. These results
suggest that blocking tumor necrosis factor and
CD95L activity with antibodies, we can prevent pri-
mary and secondary responses to ischaemia and 
pro  bably to AD. 

Conclusions

Considerable progress has been made in the last
decade by handful scientists in resolving the etiology
and the development of new perspective therapies
for AD. Efforts to intensification of therapy research
are justified at both humanistic and economic levels
[27,157]. Extensive investigation designed to disco -
very new ways to delay onset and progression of AD
and on new therapies recently is ongoing worldwide
[103]. Since all degenerative diseases share commo -
nalities that lead to neurons death, these treatments
proposals not only apply to ischaemic model of AD
[120,122,125,132,138,141,142] but to AD transgenic
models [94,166]. Scientists are evaluating other
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potentially promising approaches studying e.g. the
active and passive immunization treatments and try-
ing combinations of therapies and investigating rela-
tionships between ischaemic and Alzheimer’s demen-
tia therapies. Among treatments for AD in both
experimental and clinical trials are many strategies to
block toxic β-amyloid peptide 1-42 and to rescue the
vulnerable neuronal cells from death. Other proposals
aim to prevent the co-pathogenic effects of different
proteins e.g. amyloid and tau protein [6,83]. New
insights into selective neurons vulnerability and the
link between brain ischaemia and AD may provide no -
vel entry points for effective therapy. By controlling
blood-to-brain and brain-to-blood β-amyloid peptide
movement [35,120,126] the blood-brain barrier may
self-limit amyloid dependent capillary injuries and
decrease the risk of neurons death and β-amyloid
plaques formation [132,137,140]. It can be concluded
that immunotherapy and other treatments based on
β-amyloid peptide removal from brain may be benefi-
cial in limiting the degree of secondary degeneration
caused by amyloid properties [6]. Enhancement of 
β-amyloid peptide degradation enzymes via gene
therapy, transcriptional activation or even pharmaco-
logical activation of the β-amyloid peptide degrading
enzymes represents a new therapeutic proposal for
the treatment of AD [48]. Based on the peripheral sink
theory, it is possible to decrease brain β-amyloid pep-
tide burden without the need for antibodies and ther-
apeutic agents to move via the blood-brain barrier
[41,42]. These findings indicated that treatment
against β-amyloid peptide might still be a viable
option for the treatment of AD, if potentially harmful
proinflammatory effects can be avoided. These data
also suggest that stopping leakage of β-amyloid pep-
tide from blood into brain [43] and increasing its
reverse movement from brain tissue into blood
[12,126] can help individuals with AD [34,42,73,85,
172]. 

Recently it has been difficult in translating experi-
mental treatments into effective clinical cure. The
issue is that investigators do not consider important
variables in dealing with human cases as opposed to
rodent models. Actually the standard in developing
drugs has been to focus on a single target. However,
the underlying degenerative pathways in neurologi-
cal disorders involve an intertwining of many mecha-
nisms and treating one will not necessarily change
the outcome of the disorder. The current focus is
shifting to a multi-functional approach in which a sin-

gle drug has multiple neurobiochemical targets and
can therefore cure the disorder or consequences of
pathology more fully [188]. In the future treatment
proposals will likely address events, which are
upstream of a more broadly construed pathological
cascade, which includes but is not limited to the pro-
duction and deposition of β-amyloid peptide. 
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